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Abstract

In this paper I propose to estimate densities with possibly restricted
support semi-nonparametrically (SNP) using SNP densities on the
unit interval based on orthonormal Legendre polynomials. This ap-
proach will be applied to the interval censored mixed proportional
hazard (ICMPH) model, where the distribution of the unobserved
heterogeneity is modeled semi-nonparametrically. Various conditions
for the nonparametric identification of the ICMPH model are derived.
I will prove general consistency results for M estimators of (partly)
non-Euclidean parameters under weak and easy-to-verify conditions,
and specialize these results to sieve estimators. Special attention is
paid to the case where the support of the covariates is finite.
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1 Introduction
Given a continuous distribution function G(x) with support Ξ ⊂ R, any
distribution function F (x) with support contained in Ξ can be written as
F (x) = H(G(x)), where H(u) = F (G−1(u)) is a distribution function on
[0, 1]. Moreover, if F and G are absolutely continuous with densities f and g,
respectively, then H is absolutely continuous with density h(u), and f(x) =
h(G(x))g(x). Therefore, f(x) can be estimated semi-nonparametrically by
estimating h(u) semi-nonparametrically. The role of G is twofold. First,
G determines the support of f . Second, G acts as an initial guess of the
unknown distribution function F . Obviously, in the latter case the initial
guess is right if H is the c.d.f. of the uniform distribution on [0, 1].
Any density h on the unit interval can be written as h(u) = ϕ(u)2, where

ϕ is a Borel measurable real function on [0, 1]. It will be shown that square-
integrable Borel measurable functions on the unit interval have an infinite
series expansion in terms of orthonormal Legendre polynomials. Therefore,
the density h(u) can be modeled semi-nonparametrically in a similar way
as proposed by Gallant and Nychka (1987), except that instead of Hermite
polynomials the Legendre polynomials are used.
This approach will be applied to the mixed proportional hazard (MPH)

model, which was proposed by Lancaster (1979), but where now the duration
involved is only observed in the form of intervals. The interval-censored
mixed proportional hazard (ICMPH) model involved is motivated by the
data used in Bierens and Carvalho (2006), where the durations involved, job
search and recidivism, are only observed in the form of intervals.1

The survival function of the MPH model takes the form H (S(t)) , where
S(t) is the survival function of the proportional hazard model without unob-
served heterogeneity, and H is an absolutely continuous distribution function
on the unit interval corresponding to the unobserved heterogeneity distrib-
ution. The density h of this distribution function H will be modeled semi-
nonparametrically. I will set forth conditions under which the parameters

1However, since only a few discrete covariates affected the two durations, the presence
of unobserved heterogeneity could not be detected.
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of the systematic and baseline hazards are nonparametrically identified, and
the sieve maximum likelihood estimators involved are consistent.
The plan of the paper is the following. In Section 2 the Legendre polyno-

mials are be introduced and their use motivated, and in Section 3 I will show
how density and distribution functions on the unit interval can be represented
by linear combinations of Legendre polynomials. In Section 4 I will discuss
the interval-censored MPH model and in Section 5 I will derive conditions
for nonparametric identification under interval-censoring. Due to the lat-
ter, the identification conditions and their derivations in Elbers and Ridder
(1982) and Heckman and Singer (1984) are not directly applicable, and have
to be re-derived for the interval-censored case. Heckman and Singer (1984)
derive identification conditions by verifying the more general conditions in
Kiefer and Wolfowitz (1956). As shown by Meyer (1995), the results in the
latter paper can also be used to prove identification and consistency in the
case of interval-censoring, provided that the systematic hazard has support
(0,∞), which is the case if at least one covariate has as support the whole
real line and has a non-zero coefficient. However, I will in this case derive the
identification and consistency conditions directly without using the results
of Kiefer and Wolfowitz (1956), for two related reasons. First, as is apparent
from Meyer (1995), it is very complicated to link the conditions in Kiefer and
Wolfowitz (1956) to the ICMPH model. Second, it is actually much easier
and more transparent to derive these conditions directly.
In Section 6 I will sketch the requirements for consistency of the SNP

maximum likelihood sieve estimators. One of the requirements is that the
space of density functions h involved is compact. Therefore, in Section 7
I will show how to construct a compact metric space of densities on the
unit interval. In Section 8 I will prove general consistency results for M
estimators of (partly) non-Euclidean parameters under weak and easy-to-
verify conditions, and specialize these results to ICMPH models.
One of the key conditions for nonparametric identification2 in the interval-

censored case is that at least one covariate has the whole real lineR as support
and has a nonzero coefficient, so that the systematic hazard has support
(0,∞). However, in practice this condition is often not satisfied. Therefore,
in Section 9 I will discuss the case that the covariates have finite support. In
Section 10 the main contribution of this paper are summarized, and avenues

2In the sense that the parameters as well as the unobserved heterogeneity distribution
are identified.
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for future research are indicated. Finally, proofs are only presented in the
main text if they are essential for the flow of the argument. All other proofs
are given in the Appendix.

2 Orthonormal polynomials

2.1 Hermite polynomials

Gallant and Nychka (1987) consider SNP estimation of Heckman’s (1979)
sample selection model, where the bivariate error distribution of the latent
variable equations is modeled semi-nonparametrically using an Hermite ex-
pansion of the error density. In the case of a density f(x) on R this Hermite
expansion takes the form

f(x) = φ(x)

Ã ∞X
k=0

γkµk(x)

!2
, (1)

with
P∞

k=0 γ
2
k = 1, where φ(x) is the standard normal density and the µk(x)’s

are Hermite polynomials, satisfying
R∞
−∞ µk(x)µm(x)φ(x)dx = I (k = m) ,

where I(.) is the indicator function. These polynomials can easily be gener-
ated via the recursive relation

√
nµn(x) = x.µn−1(x)−

√
n− 1µn−2(x), start-

ing from µ0(x) = 1, µ1(x) = x. See for example Hamming (1973, p. 457).
The densities (1) can be approximated arbitrarily close by SNP densities of
the type

fn(x) = φ(x)

Ã
nX
k=0

γk,nµk(x)

!2
, (2)

where
Pn

k=0 γ
2
k,n = 1.

Because f0(x) = φ(x), the Hermite expansion is particularly suitable for
generalizations of the normal density. For example, a natural generalization
of the Probit model is P [Y = 1|X] = Fn (β0X) , where

Fn(x) =

Z x

−∞
fn(z)dz =

nX
k=0

nX
m=0

γk,nγm,n

Z x

−∞
φ(z)µk(z)µm(z)dz, (3)

which yields the standard Probit model as a special case, corresponding to
the null hypothesis γk,n = 0 for k = 1, ..., n. If the actual distribution function
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F (x) in the general binary response model P [Y = 1|X] = F (β 0X) does not
deviate too much from the Probit function, a low value of n may suffice to
give a good approximation.
Of course, the SNP density fn(x) can be transformed to a density hn(u)

on the unit interval such that h0(u) = 1, namely

hn(u) = fn
¡
F−10 (u)

¢
/φ
¡
F−10 (u)

¢
,

with corresponding distribution function Hn(u) = Fn
¡
F−10 (u)

¢
, where fn

is the SNP density (2), Fn is the corresponding c.d.f. (3), and F−10 (u) is
the inverse of the Probit function F0(x) =

R x
−∞ φ(z)dz. However, the Probit

function does not have a closed form, and neither does its inverse. Therefore,
it is more convenient to define SNP densities on the unit interval directly on
the basis of orthonormal polynomials on the unit interval than indirectly
using Hermite polynomials.

2.2 Legendre polynomials

A convenient way to construct orthonormal polynomials on [0, 1] is to base
them on Legendre polynomials Pn(z) on [−1, 1]. For n ≥ 2 these polynomials
can be constructed recursively by

Pn(z) =
(2n− 1)z.Pn−1(z)− (n− 1)Pn−2(z)

n
(4)

starting from P0(z) = 1, P1(z) = z. They are orthogonal, but not orthonor-
mal: Z 1

−1
Pm(z)Pn(z)dz =

½
0 if n 6= m,
2/(2n+ 1) if n = m.

(5)

See for example Hamming (1973, p. 455).
Now define for u ∈ [0, 1], ρn(u) =

√
2n+ 1Pn(2u − 1). Then it follows

from (5) that the polynomials ρn(u) are orthonormal:Z 1

0

ρk(u)ρm(u)du =

½
0 if k 6= m,
1 if k = m,

(6)

and from (4) that for n ≥ 2 they can be computed recursively by

ρn(u) =

√
4n2 − 1
n

(2u− 1)ρn−1(u)− (n− 1)
√
2n+ 1

n
√
2n− 3 ρn−2(u), (7)

starting from
ρ0(u) = 1, ρ1(u) =

√
3 (2u− 1) . (8)
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3 Density and distribution functions on the
unit interval

3.1 Polynomial representation

Every density function h(u) on [0, 1] can be written as h(u) = f(u)2, whereR 1
0
f(u)2du = 1. In Theorem 1 below I will focus on the characterization of

square-integrable functions on [0, 1] in terms of the Legendre polynomials
ρk(u), and then specialize the result involved to densities on [0, 1].

Theorem 1. Let f(u) be a Borel measurable function on [0, 1] such thatR 1
0
f(u)2du <∞,3 and let γk =

R 1
0
ρk(u)f(u)du. Then

P∞
k=0 γ

2
k <∞, and the

set {u ∈ [0, 1]: f(u) 6= P∞
k=0 γkρk(u)} has Lebesgue measure zero. In other

words, the Legendre polynomials ρk(u) on [0, 1] form an complete orthonormal
basis for the Hilbert space L2B(0, 1) of Borel measurable real functions on [0, 1].

Recall4 that, more generally, the real Hilbert space L2(0, 1) is the space
of square-integrable Lebesgue measurable real functions on [0, 1], i.e., f ∈
L2(0, 1) implies

R 1
0
f(u)2du < ∞, endowed with the inner product hf, gi =R 1

0
f(u)g(u)du and associated metric

kf − gk2 =
sZ 1

0

(f(u)− g(u))2 du (9)

and norm kfk2 .Moreover, recall that Borel measurable functions are Lebesgue
measurable because Borel sets are Lebesgue measurable sets.5 Therefore, the
subspace L2B(0, 1) of Borel measurable real functions in L

2(0, 1) is a Hilbert
space itself.
The proof of Theorem 1 is based on the following straightforward corollary

of Theorem 2 in Bierens (1982):

Lemma 1. Let f1(u) and f2(u) be Borel measurable real functions on [0, 1]
such that Z 1

0

|f1(u)| du <∞,
Z 1

0

|f2(u)| du <∞. (10)

3Note that this integral is the Lebegue integral.
4See for example Young (1988, pp. 24-25).
5See for example Royden (1968, pp. 59 and 66)

6



Then the set {u ∈ [0, 1]: f1(u) 6= f2(u)} has Lebesgue measure zero if and
only if for all nonnegative integers k,Z 1

0

ukf1(u)du =

Z 1

0

ukf2(u)du. (11)

Each uk can be written as a linear combination of ρ0(u), ρ1(u), ..., ρk(u)
with Fourier coefficients

R 1
0
ukρm(u)du, m = 0, 1, .., k, hence condition (11)

is equivalent to
R 1
0
ρk(u)f1(u)du =

R 1
0
ρk(u)f2(u)du for k = 0, 1, 2, .....

Now let in Lemma 1, f1(u) = f(u) and f2(u) =
P∞

k=0 γkρk(u), where
γk =

R 1
0
ρk(u)f(u)du. Then

∞X
k=0

γ2k <∞ (12)

because
R 1
0
(f(u)−Pn

k=0 γkρk(u))
2
du is minimal for γk =

R 1
0
ρk(u)f(u)du,

so that for all natural numbers n,
Pn

k=0 γ
2
k ≤

R 1
0
f(u)2du <∞. The existence

of f2(u) follows from the fact that, due to (12), f2,n(u) =
Pn

k=0 γkρk(u) is
a Cauchy sequence in the Hilbert space L2B(0, 1) and therefore has a limit
f2 ∈ L2B(0, 1): limn→∞

R 1
0
(f2,n(u)− f2(u))2 du = 0. Hence, we can write

f2(u) =
Pn

k=0 γkρk(u) + rn(u), were limn→∞
R 1
0
rn(u)

2du = 0. Next, choose
a subsequence nm such that

P∞
m=1

R 1
0
rnm(u)

2du < ∞. Then it follows
from the Borel-Cantelli lemma6 and Chebishev’s inequality that f2(u) =
limm→∞

Pnm
k=0 γkρk(u) a.e. on (0, 1).

Moreover, it follows from Liapounov’s inequality and the orthonormal-

ity of the ρk(u)’s that
R 1
0
|f2(u)| du ≤

qR 1
0
f2(u)2du =

pP∞
k=0 γ

2
k < ∞.

Similarly, it follows from the condition
R 1
0
f(u)2du < ∞ in Theorem 1 thatR 1

0
|f1(u)| du < ∞. Therefore, all the conditions of Lemma 1 are satisfied,

which proves Theorem 1.
Every density function h(u) on [0, 1] is Borel measurable because, with

H the corresponding distribution function, h(u) = limk→∞ k (H(u+ k−1)−
H(u)) , which is a pointwise limit of a sequence of continuous (hence Borel
measurable) functions and therefore Borel measurable itself. Consequently,
every density function h on [0, 1] can be written as h(u) = f(u)2, where f(u)
is a Borel measurable real function on [0, 1] satisfying

R 1
0
f(u)2du = 1.

6See for example, Chung (1974, Section 4.2).
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Of course, this representation is not unique, as we may replace f(u) by
f(u)φB(u), where for arbitrary Borel subsets B of [0, 1] with complementeB = [0, 1]\B,

φB(u) = I(u ∈ B)− I(u ∈ eB). (13)

This is a simple function, hence f(u)φB(u) is Borel measurable. Therefore,
any Borel measurable function f on [0, 1] for which h(u) = f(u)2 is a density
on [0, 1] can be written as f(u) = φB(u)

p
h(u), with φB(u) a simple function

of the type (13). Consequently, any density h(u) on [0, 1] can be represented
by

h(u) =

Ã ∞X
k=0

γkρk(u)

!2
, with γk =

Z 1

0

ρk(u)φB(u)
p
h(u)du. (14)

We can always choose B is such that

γ0 =

Z 1

0

φB(u)
p
h(u)du =

Z
B

p
h(u)du−

Z
eB
p
h(u)du > 0. (15)

This is useful, because it allows us to get rid of the restriction
P∞

k=0 γ
2
k = 1

by reparametrizing the γk’s as:

γk =
δkp

1 +
P∞

k=1 δ
2
k

, k = 1, 2, 3, ..., (16)

γ0 =
1p

1 +
P∞

k=1 δ
2
k

,

where
P∞

k=1 δ
2
k < ∞. However, because there are uncountable many Borel

subsets B of [0, 1] for which (15) holds, there are also uncountable many of
such reparametrizations. Thus,

Theorem 2. For every density function h(u) on [0, 1] there exist uncountable
many infinite sequences {δk}∞1 satisfying

P∞
k=1 δ

2
k <∞ such that

h(u) =
(1 +

P∞
k=1 δkρk(u))

2

1 +
P∞

k=1 δ
2
k

a.e. on [0, 1]. (17)
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3.2 SNP density functions on the unit interval

For a density h(u) with one of the associated sequences {δk}∞1 , let

hn(u) = hn(u|δ) = (1 +
Pn

k=1 δkρk(u))
2

1 +
Pn

k=1 δ
2
k

, δ = (δ1, ..., δn)
0 . (18)

It is straightforward to verify that

Theorem 3. For each density h(u) on [0, 1] there exists a sequence of
densities hn(u) of the type (18) such that limn→∞

R 1
0
|h(u)− hn(u)| du = 0.

Consequently, for every absolutely continuous distribution function H(u) on
[0, 1] there exists a sequence of absolutely continuous distribution functions
Hn(u) =

R u
0
hn(v)dv such that limn→∞ sup0≤u≤1 |H(u)−Hn(u)| = 0.

Following Gallant and Nychka (1987), the density functions of the type
(18) with a finite n will be called SNP density functions, and the correspond-
ing distribution functionsHn(u) =

R u
0
hn(v)dv will be called SNP distribution

functions.
As we have seen in Theorem 2, the densities (17) have uncountable many

equivalent series representations. This is no longer the case for SNP densities:

Theorem 4. The parametrization of the SNP densities is unique, in the
sense that if for a pair δ1, δ2 ∈ Rn, hn(u|δ1) = hn(u|δ2) a.e. on a subset of
[0, 1] with positive Lebesgue measure, then δ1 = δ2.

This result follows easily from the fact the number of roots of a polynomial of
order n cannot exceed n, hence if two polynomials on [0, 1] are equal a.e. on
a subset with positive Lebesgue measure, then they are equal a.e. on [0, 1].

3.3 Computation of SNP distribution functions on the
unit interval

The distribution function Hn(u|δ) =
R u
0
hn(v|δ)dv, with hn given by (18),

can be written as

Hn(u|δ) =

R u
0
(1 +

Pn
m=1 δmρm(v))

2
dv

1 +
Pn

m=1 δ
2
m

=
(1, δ0)An+1(u)

¡
1
δ

¢
1 + δ0δ

, (19)

u ∈ [0, 1], δ = (δ1, ..., δn)
0,

9



where An+1(u) is the (n+ 1)× (n+ 1) matrix

An+1(u) =

µZ u

0

ρi(v)ρj(v)dv ; i, j = 0, 1, ...., n

¶
. (20)

Let ρm(u) =
Pm

k=0 `m,ku
k. Then it follows from (7) and (8) that

`0,0 = 1, `1,0 = −
√
3, `1,1 = 2

√
3, (21)

and for m ≥ 2,
mX
k=0

`m,ku
k =

2
√
4m2 − 1
m

mX
k=1

`m−1,k−1uk −
√
4m2 − 1
m

m−1X
k=0

`m−1,kuk

−(m− 1)
√
2m+ 1

m
√
2m− 3

m−2X
k=0

`m−2,kuk.

Hence, letting `m,k = 0 for k > m and k < 0, the coefficients `m,k can be
computed recursively by

`m,k =

√
4m2 − 1
m

(2`m−1,k−1 − `m−1,k)− (m− 1)
√
2m+ 1

m
√
2m− 3 `m−2,k,

starting from (21). For 0 ≤ m ≤ n, 0 ≤ k ≤ n the coefficients `m,k can be
arranged as the elements of a lower triangular (n+1)× (n+1) matrix Ln+1,
with m-th row (`m,0, ..., `m,n) .
Next, observe that

Z u

0

ρk(v)ρm(v)dv = (`k,0, ..., `k,n)Πn+1(u)

⎛⎜⎝ `m,0
...
`m,n

⎞⎟⎠ ,
where Πn+1(u) is the (n+ 1)× (n+ 1) matrix

Πn+1(u) =

µ
ui+j+1

i+ j + 1
; i, j = 0, 1, ..., n

¶
.

Therefore,

Hn(u|δ) =
(1, δ0)Ln+1Πn+1(u)L0n+1

¡
1
δ

¢
1 + δ0δ

, (22)

u ∈ [0, 1], δ = (δ1, ..., δn)
0.
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In practice, however, the lower triangular matrix Ln+1 can only be com-
puted with sufficient accuracy7 up to about n = 15.

4 The interval-censored mixed proportional
hazard model

4.1 The MPH model

Let T be a duration, and let X be a vector of covariates. As is well-known8,
the conditional hazard function is defined as λ(t|X) = f(t|X)/(1−F (t|X)),
where F (t|X) = P [T ≤ t|X], f(t|X) is the corresponding conditional density
function, and

R∞
0

λ(τ |X)dτ =∞. Then the conditional survival function is

S(t|X) = 1− F (t|X) = exp
µ
−
Z t

0

λ(τ |X)dτ
¶
.

The mixed proportional hazard model assumes that the conditional sur-
vival function takes the form

S(t|X,α,β) = S(t|X) (23)

= E

∙
exp

µ
− exp (β 0X + U)

Z t

0

λ(τ |α)dτ
¶¯̄̄̄
X

¸
,

where U represents unobserved heterogeneity, which is independent of X,
λ(t|α) is the baseline hazard function depending on a parameter (vector) α,
and exp(β0X) is the systematic hazard function. See Lancaster (1979). De-
noting the distribution function of V = exp(U) by G(v), and the integrated
baseline hazard by Λ(t|α) = R t

0
λ(τ |α)dτ, we have

S(t|X,α, β, h) =

Z ∞

0

exp (−v. exp(β0X)Λ(t|α)) dG(v) (24)

=

Z ∞

0

(exp (− exp(β 0X)Λ(t|α)))v dG(v)
= H (exp (− exp(β 0X)Λ(t|α))) ,

7Note that Ln+1Πn+1(1)L0n+1 = In+1. With n = 15, the computed elements of the
matrix Ln+1Πn+1(1)L0n+1−In+1 are smaller in absolute value than 0.000000001.Moreover,
for n > 20 some of the elements `n,k become too big (more than 29 digits, including the
decimal point) to be stored in the memory of a PC.

8See for example Van den Berg (2000) and the references therein.
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where

H(u) =

Z ∞

0

uvdG(v), u ∈ [0, 1], (25)

is a distribution function on [0, 1].
If the unobserved heterogeneity variable V satisfies E[V ] < ∞ then for

u ∈ (0, 1], Z ∞

0

vuv−1dG(v) ≤ u−1
Z ∞

0

vdG(v) <∞, (26)

so that by the mean value and dominated convergence theorems, H(u) is
differentiable on (0, 1), with density function

h(u) =

Z ∞

0

vuv−1dG(v). (27)

This is the reason for the argument h in the left-hand side of (24). Moreover,
(26) implies that h(u) is finite and continuous9 on (0, 1]. Furthermore, note
that absence of unobserved heterogeneity, i.e., P [V = 1] = 1, is equivalent
to the case h(u) ≡ 1.
Let the true conditional survival function be

S(t|X,α0, β0, h0) =

Z ∞

0

exp (−v. exp(β 00X)Λ(t|α0)) dG0(v) (28)

= H0 (exp (− exp(β 00X)Λ(t|α0)))

where H0(u) =
R u
0
h0(v)dv =

R∞
0
uvdG0(v). In the expressions (24) and (28),

h and h0 should be interpreted as unknown parameters contained in a para-
meter space D(0, 1), say, of density functions on (0, 1].
For the ease of reference I will call this model the Interval-Censored Mixed

Proportional Hazard (ICMPH) model.
Elbers and Ridder (1982) have shown that if X does not contain a con-

stant,
Λ(t|α) = Λ(t|α0) for all t > 0 implies α = α0, (29)

and Z ∞

0

vdG0(v) =

Z ∞

0

vdG(v) = 1 (30)

9The continuity also follows from the dominated convergence theorem.
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(which by (27) is equivalent to confining the parameter space D(0, 1) to a
space of densities h on (0, 1] satisfying h(1) = 1), then the MPH model is
nonparametrically identified, in the sense that

S(T |X,α, β0, h) = S(T |X,α0, β0, h0) a.s.

implies α = α0 and G = G0, hence h(u) = h0(u) a.e. on [0, 1]. Heckman
and Singer (1984) provide an alternative identification proof based on the
results of Kiefer and Wolfowitz (1956), and propose to parametrize G0 as
a discrete distribution: G0(v) =

Pq
i=1 I (v ≤ θi) pi, with I(.) the indicator

function, where θi > 0, pi > 0, and
Pq

i=1 pi = 1. Thus, they implicitly
specify h0(u) =

Pq
i=1 θiu

θi−1pi.
The nonparametric identification of the MPH model hinges on the as-

sumption that T is observed directly if T is not right-censored. In this paper
I will consider the case that T is only observed in the form of intervals, so
that the identification results in Elbers and Ridder (1982) and Heckman and
Singer (1984) are not directly applicable.
Recall that the interval-censored case has been considered before byMeyer

(1995), who derived identification and consistency conditions based on the
results of Kiefer and Wolfowitz (1956). However, in this paper I will derive
these conditions directly without using the Kiefer and Wolfowitz (1956) re-
sults, because that is much easier and more transparent, as comparison of
the results below with Meyer (1995) will reveal.

4.2 Interval-censoring

Let {Tj , Cj ,Xj}Nj=1 be a random sample of possibly censored durations Tj ,
with corresponding censoring dummy variable Cj and vectorXj of covariates.
The actual duration is a latent variable T ∗j > 0 with conditional survival
function

P [T ∗j > t|Xj] = S(t|Xj ,α0, β0, h0), (31)

where S(t|X,α, β, h) is defined by (28), α0 and β0 are the true parameter
vectors and h0 is the true density (27). If Cj = 0 then T ∗j is observed: Tj =
T ∗j , and if Cj = 1 then T

∗
j is censored: Tj = T j < T

∗
j , where [1, T j ] is the time

interval over which individual j has been, or would have been, monitored. It
will be assumed that T j is entirely determined by the setup of the survey,
and may therefore be considered exogenous, and that T = infj≥1 T j > 0.
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In practice the observed durations Tj are always measured in discrete
units (days, weeks, months, etc.), so that we should not treat them as con-
tinuous random variables. Therefore, pick M positive numbers b1 < b2 <
... < bM ≤ T, and create the dummy variables

D1,j = I (Tj ≤ b1) (32)

D2,j = I (b1 < Tj ≤ b2)
...

DM,j = I (bM−1 < Tj ≤ bM)
where I(.) is the indicator function. See Meyer (1995). Also, in some cases
the durations Tj are only observed in the form of intervals. See for example
Bierens and Carvalho (2006).
For notational convenience, let b0 = 0 and denote for i = 0, 1, ...,M,

µi (α,β
0Xj) = exp (− exp(β0Xj)Λ (bi|α)) . (33)

Note that µ0 (α, β0Xj) = 1. Then

P [Di,j = 1|Xj] = S(bi−1|Xj ,α0, β0, h0)− S(bi|Xj ,α0, β0, h0) (34)
= H0 (µi−1 (α0, β00Xj))−H0 (µi (α0, β00Xj))

i = 1, 2, ...,M,

P

"
MX
i=1

Di,j = 0

¯̄̄̄
¯Xj

#
= S(bM |Xj ,α0, β0, h0) = H0 (µM (α0, β00Xj)) ,

where H0(u) =
R u
0
h0(v)dv. The density h0 will be treated as a parameter.

The conditional log-likelihood function of the ICMPH model takes the
form

ln (LN(α, β, h)) (35)

=
NX
j=1

MX
i=1

Di,j ln (H (µi−1 (α, β0Xj))−H (µi (α,β 0Xj)))

+
NX
j=1

Ã
1−

MX
i=1

Di,j

!
ln (H (µM (α,β

0Xj)))

with H(u) =
R u
0
h(v)dv.
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4.3 Baseline hazard specification

Note that we do not need to specify the integrated baseline hazard Λ(t|α)
completely for all t > 0. It suffices to specify Λ(t|α) only for t = b1, ..., bM .
Therefore we may without loss of generality parametrize Λ(t|α) as a piecewise
linear function:

Λ(t|α) = Λ(bi−1|α) + αi (t− bi−1) (36)

=
i−1X
k=1

αk (bk − bk−1) + αi (t− bi−1) for t ∈ (bi−1, bi],

αm > 0 for m = 1, ...,M, α = (α1, ...,αM)
0 ∈ RM .

There are of course equivalent other ways to specify Λ(bi|α). For example,
let

Λ(bi|α) =
iX

m=1

αm, αm > 0 for m = 1, ...,M, (37)

or

Λ(bi|α) = exp (αi) , α1 < α2 < ... < αM , (38)

Λ(b0|α) = Λ(0|α) = 0.
The advantage of the specification (36) is that the null hypothesis α1 =

... = αM corresponds to the constant hazard λ(t|α) = α1. In that case
exp (β 0X)Λ(t|α) = exp (ln(α1) + β0X) t, so that ln(α1) acts as a constant
term in the systematic hazard.
However, the specification (37) is useful for deriving identification condi-

tions, as will be shown in the next subsection. The same applies to (38).
Note that under specification (38) the probability model (34) takes the

form of a generalized ordered probability model, similarly to an ordered pro-
bit or logit model:

P [Σmi=1Di,j = 1 | Xj] = F0 (β00Xj + α0,m) , m = 1, 2, ...,M, (39)

where
F0 (x) = 1−H0 (exp (− exp(x))) , (40)

with density

f0 (x) = h0 (exp (− exp(x))) exp (− exp(x)) exp(x). (41)
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This case makes clear that we cannot allow a constant in the vector Xj ,
because the constant can be absorbed by the α0,i’s in (39). Moreover, for the
identification of α0 and β0 in (39) it is necessary to normalize the location
and scale of the distribution F0 (x) .

5 Nonparametric identification of the ICMPH
model with continuously distributed covari-
ates

5.1 Introduction

Let us assume that Λ(bi|α) is specified as (37). It follows easily from the
inequality ln(x) < x− 1 if x > 0 and x 6= 1, and the equality

E [LN(α, β, h)/LN (α0, β0, h0)|X1, ..., XN ] = 1 a.s.
that

E
£
N−1 ln (LN(α,β, h)/LN(α0, β0, h0))

¯̄
X1, ..., XN

¤
< 0

if and only if for some i ∈ {1, ...,M},

P

"
H

Ã
exp

Ã
− exp (β0Xj)

Ã
iX

m=1

αm

!!!

= H0

Ã
exp

Ã
− exp (β00Xj)

Ã
iX

m=1

α0,m

!!!¯̄̄̄
¯Xj

#
< 1.

This implies that

E
£
N−1 ln (LN (α, β, h)/LN (α0, β0, h0))

¤
= 0 (42)

if and only if

H

Ã
exp

Ã
− exp (β 0X)

Ã
iX

m=1

αm

!!!
(43)

= H0

Ã
exp

Ã
− exp (β 00X)

Ã
iX

m=1

α0,m

!!!
a.s. for i = 1, ...,M,
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where X = Xj.
Now the question arises: Under what conditions does (43) imply that

α = α0, β = β0 and H = H0 ? Obviously, the ICMPH model involved is not
identified if β0 = 0 or if one of the components of X is a constant. Thus:

Assumption 1(a): None of the covariates is constant, and at least one
covariate has a nonzero coefficient.

For i = 1, (43) reads

H (exp (− exp (β0X)α1)) = H0 (exp (− exp (β00X)α0,1)) a.s. (44)

To derive further condition such that (46) implies β = β0 and α1 = α0,1 we
need to distinguish two cases.
The first case is that there is only one covariate: X ∈ R.Without loss of

generality we may assume that β = c.β0, so that (44) now reads

H (exp (− exp (c.β0X)α1)) = H0 (exp (− exp (β0X)α0,1)) a.s.

or equivalently,

H
¡
exp

¡−α1α−c0,1 (ln (1/u))c¢¢ = H0 (u) (45)

for all u in the support S1 of U = exp (− exp (β0X)α0,1) . Note that, due to
the monotonicity of H and H0, (45) implies that c > 0.
Next, consider the case that X ∈ Rk with k ≥ 2. I will set forth a further

condition under which β 0X = c.β 00X for some constant c > 0, as follows.
Denote Υ(u) = ln (− ln (H−1 (H0 (u)))) , and observe that Υ(u) is monotonic
decreasing on (0, 1). Then it follows from (44) that

β 0X = Υ (exp (− exp (β 00X)α0,1))− lnα1 (46)

= ϕ (β 00X) ,

for example, where ϕ is a monotonic increasing function on R. Now augment
||β0||−1β0 with a k × (k − 1) matrix Q1 to form an orthogonal matrix Q:

Q =

µ
1

||β0||β0, Q1
¶

(47)
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and define

Z = Q0X =

µ ||β0||−1β 00X
Q01X

¶
=

µ
Z1
Z2

¶
(48)

γ = Q0β =
µ ||β0||−1β 00β
Q01β

¶
=

µ
γ1
γ2

¶
so that by (46),

γ1Z1 + Z
0
2γ2 = γ0Z = β0X = ϕ (||β0||.Z1) . (49)

If γ2 = 0 then β0X = γ1Z1 = γ1||β0||−1β 00X = c.β 00X, say. To establish
that γ2 = 0, observe from (49) that

Z 02γ2 = E[Z
0
2γ2|Z1] = ϕ (||β0||.Z1)− γ1Z1,

hence, denoting
W = Z2 − E[Z2|Z1] (50)

we have W 0γ2 = 0 and thus E [WW 0] γ2 = 0. Therefore, γ2 = 0 if E [WW 0]
is nonsingular, which is the case if and only if

Assumption 1(b): The matrix Σ0 = E
£
(X −E[X|β 00X]) (X −E[X|β 00X])0

¤
has only one zero eigenvalue (corresponding to the eigenvector β0).

Note that β00X − E[β 00X|β 00X] = 0, so that Σ0β0 = 0.
To show that Assumption 1(b) is a necessary and sufficient condition for

det (E [WW 0]) > 0, observe from (48) and (50) that E [WW 0] = Q01Σ0Q1.
Without loss of generality we may assume that Q1 in (47) is the matrix of
orthonormal eigenvectors corresponding to the k − 1 positive eigenvalues of
Σ0, so that

Σ0 =
¡||β0||−1β0, Q1¢µ 0 00

0 Λ

¶µ ||β0||−1β 00
Q01

¶
= Q1ΛQ

0
1,

where Λ is the diagonal matrix with the positive eigenvalues of Σ0 on the
diagonal. Thus E [WW 0] = Q01Q1ΛQ

0
1Q1 = Λ.

If Σ0 has more than one zero eigenvalue then there exists a nonzero vec-
tor γ2 such that γ02Z2 = γ02Q

0
1X is a function of β 00X. Since β1 = Q1γ2 is
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orthogonal to β0, Assumption 1(b) is therefore equivalent to the statement
that

β1 6= 0, β 01β0 = 0⇒ P (β 01X = E [β 01X|β 00X]) < 1.
Assumptions 1(a)-(b) together will now be referred to as Assumption 1.

Thus, the following result has been shown.

Lemma 2. Suppose that

P [T > b1|X] = H0 (exp (− exp (β 00X)α0,1)) (51)

= H (exp (− exp (β0X)α1)) a.s.

Under Assumption 1, (51) implies that there exists a constant c > 0 such that
β = c.β0, so that for all u in the support S1 of U = exp (− exp (β 00X)α0,1) ,

H
¡
exp

¡−α1α−c0,1 (ln (1/u))c¢¢ = H0 (u) . (52)

Given β0, for every α0,1 > 0 there exists a distribution function H0 such
that the first equality in (51) is true. Moreover, given β0, α0,1 and H0, for
every c > 0 there exists an α1 > 0 and a distribution function H such that
(52) holds. Therefore, to establish first that c = 1 (so that β = β0), and then
that H

¡
uα1/α0,1

¢
= H0 (u) on S1 implies α1 = α0,1, we need to normalize H0

and H in some way. How to do that depends on the support of β 00X. If

Assumption 2. The support of β 00X is the whole real line R,10

then there are various options for normalizing H0 and H, as follows.

5.2 Nonparametric identification via extreme values

Taking the derivative of (48) to u yields

h0 (u) = h
¡
exp

¡−α1α−c0,1 (ln (1/u))c¢¢ exp ¡−α1α−c0,1 (ln (1/u))c¢ (53)

×α1α−c0,1c (ln (1/u))c−1
1

u
, ∀u ∈ S1 .

10The results in Meyer (1995) are based on this assumption.
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Now suppose that
∀x ∈ R, P [β 00X ≤ x] > 0, (54)

which is a weaker condition than Assumption 2, and

h0(1) = h(1) = 1. (55)

Recall that (55) corresponds to the condition that E[V ] = 1. Moreover,
using the easy equality ρk(1) =

√
2k + 1, it follows straightforwardly from

(17) that condition (55) can be implemented by restricting h0 and h to density
functions of the type (17), with

δ1 =
1

2

vuut2Ã1 + ∞X
k=2

δ2k

!
+

Ã
1 +

∞X
k=2

δk
√
2k + 1

!2

−
√
3

2

Ã
1 +

∞X
k=2

δk
√
2k + 1

!
.

Condition (54) implies that S1 contains a sequence un which converges to
1. Then

1 = lim
n→∞

h0 (un) = lim
n→∞

h
¡
exp

¡−α1α−c0,1 (ln (1/un))c¢¢ (56)

× lim
n→∞

exp
¡−α1α−c0,1 (ln (1/un))c¢

×α1α−c0,1c lim
n→∞

(ln (1/un))
c−1

= α1α
−c
0,1c lim

n→∞
(ln (1/un))

c−1 =

⎧⎨⎩ 0 if c > 1,
α1/α0,1 if c = 1,
∞ if c < 1.

Thus c = 1, hence β = β0 and α1 = α0,1.
Since now β0 and α0,1 are identified, the next question is: Does

H (exp (− exp (β 00X) (α0,1 + α2))) (57)

= H0 (exp (− exp (β 00X) (α0,1 + α0,2))) a.s.

imply α2 = α0,2? Let S2 be the support of U = exp (− exp (β00X) (α0,1 + α0,2))
and let

η =
α2 − α0,2
α0,1 + α0,2

(58)
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Then (57) implies that

H
¡
u1+η

¢
= H0 (u) for all u ∈ S2. (59)

Under condition (54) there exists a sequence un in S2 which converges to 1.
Therefore, similarly to (56) we have

1 = h0(1) = lim
n→∞

H0 (1)−H0 (un)
1− un

= lim
n→∞

H (1)−H (u1+ηn )

1− un = h(1) lim
n→∞

1− u1+ηn

1− un = 1 + η.

Hence, under the conditions (54) and (55) , η = 0 and thus α2 = α0,2.
Repeating this argument for i = 3, ..,M, it follows that α = α0 and

H0 (exp (− exp (β 00X)α0,i)) = H (exp (− exp (β 00X)α0,i)) a.s.
for i = 1, ...,M.
Since (36) and (37) are equivalent for t = bi, the following result holds:

Theorem 5. Let the integrated baseline hazard be specified by (36). Under
Assumption 1 and the conditions (54) and (55) the equality

E [ln (LN(α, β, h)/LN(α0, β0, h0))] = 0 (60)

implies that α = α0, β = β0, and

H (exp (− exp (β00Xj)Λ(bi|α0))) = H0 (exp (− exp (β00Xj)Λ(bi|α0))) (61)

a.s. for i = 1, ...,M. If in addition Assumption 2 holds, with X = Xj, then
(61) implies that h(u) = h0(u) a.e. on (0, 1].

Admittedly, Assumption 2 and even the weaker condition (54) are often
not satisfied in practice. In most applications the covariates are bounded and
discrete, and often quite a few of them are dummy variables. In unemploy-
ment duration studies one of the key covariates is the age of the respondent,
which is expected to have a negative coefficient. But even age is a bounded
variable, and is usually measured in discrete units (e.g., years). In that case
the ICMPH model may not be identified. Nevertheless, I will maintain As-
sumption 2 for the time being. In Section 9 below I will consider the more
realistic case that the covariates have finite support.
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The condition (55) is only effective in pinning down α0 and β0 if Ui,j =
exp (− exp (β 00Xj)Λ(bi|α0)) can get close enough to 1. Thus, the identifica-
tion hinges on the extreme negative values of β 00Xj. Under Assumption 2
it follows that p limN→∞minj=1,...,N β00Xj = −∞, hence p limN→∞maxj=1,...,N
Ui,j = 1, but in finite samples maxj=1,...,N Ui,j may not get close enough to
1 for condition (55) to be effective. Therefore, I will now derive alternative
identification conditions.

5.3 Nonparametric identification via quantile restric-
tions

Suppose that the distribution functions H and H0 are confined to distribu-
tions with two common quantiles: For a given pair u1, u2 of distinct points
in (0, 1), let

H(ui) = H0(ui) = ui, i = 1, 2. (62)

Again, the latter equality facilitates the benchmark case of absence of un-
observed heterogeneity: V = 1 a.s., which is equivalent to H(u) = H0(u) =
u a.e. on [0, 1].
Under Assumption 2, u1, u2 ∈ S1 = (0, 1). Therefore, it follows straight-

forwardly from the quantile restrictions (62) and Lemma 2 that under As-
sumptions 1-2, (ln (1/u1))

c−1 = (ln (1/u2))
c−1 = αc0,1/α1. Since u1 6= u2, the

first equality is only possible if c = 1, hence β = β0, and the second equality
then implies that α1 = α0,1.
Similarly, it follows from (58), (59) and (62) that α2 = α0,2. Therefore,

similar to Theorem 5 we have that

Theorem 6. Under Assumption 1-2 and the quantile conditions (62) the
ICMPH model is nonparametrically identified.

In other words, under Assumptions 1-2 the equality (60) implies that α = α0,
β = β0, and h(u) = h0(u) a.e. on (0, 1].
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5.4 Nonparametric identification via moment condi-
tions

Consider the ordered probability model form (39) of the ICMPH model. Let
F (x) be a distribution function of the type (40),

F (x) = 1−H (exp (− exp(x))) (63)

with density

f (x) = h (exp (− exp(x))) exp (− exp(x)) exp(x), (64)

where H(u) is a distribution function on [0, 1] with density h(u), and assume
that for some constants σ > 0 and µ ∈ R,

F (σx+ µ) ≡ F0(x). (65)

Clearly, under Assumptions 1-2 model (39) is nonparametrically identified
if (65) implies that µ = 0 and σ = 1. Taking derivatives of (65) it follows
that (65) implies

f0(x) = h0 (exp (− exp(x))) exp (− exp(x)) exp(x)
= σh (exp (− exp(σx+ µ))) exp (− exp(σx+ µ)) exp(σx+ µ)
= σf(σx+ µ) a.e.,

hence it follows from (41) and (64) that for any function ϕ on R for whichR∞
−∞ ϕ(x)f0(x)dx is well-defined,Z 1

0

ϕ (ln (ln (1/u))) h0(u)du =

Z ∞

−∞
ϕ(x)f0(x)dx (66)

= σ

Z ∞

−∞
ϕ(x)f(σx+ µ)dx

=

Z ∞

−∞
ϕ

µ
x− µ
σ

¶
f(x)dx

=

Z 1

0

ϕ

µ
ln (ln (1/u))− µ

σ

¶
h (u) du.

If we choose ϕ(x) = x then (66) impliesZ 1

0

ln (ln (1/u))h (u) du = σ

Z 1

0

ln (ln (1/u)) h0(u)du+ µ, (67)
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and if we choose ϕ(x) = x2 then (66) implies

σ2
Z 1

0

(ln (ln (1/u)))2 h0(u)du =

Z 1

0

(ln (ln (1/u)))2 h (u) du

− 2µ
Z 1

0

ln (ln (1/u))h (u) du+ µ2. (68)

Now assume thatZ 1

0

ln (ln (1/u)) h (u) du =

Z 1

0

ln (ln (1/u))h0(u)du, (69)Z 1

0

(ln (ln (1/u)))2 h (u) du =

Z 1

0

(ln (ln (1/u)))2 h0 (u) du. (70)

Then it follows from (67) and (69) that

µ = (1− σ)

Z 1

0

ln (ln (1/u)) h0(u)du (71)

and from (68) through (71) that¡
σ2 − 1¢ Z 1

0

(ln (ln (1/u)))2 h0(u)du

=
¡
σ2 − 1¢µZ 1

0

ln (ln (1/u))h0(u)du

¶2
. (72)

The latter equality implies σ = 1 becauseZ 1

0

(ln (ln (1/u)))2 h0(u)du >

µZ 1

0

ln (ln (1/u))h0(u)du

¶2
,

so that by (71), µ = 0.
Note that the values of the integrals in (69) and (70) do not matter for

this result, provided that the integrals involved are finite. However, in order
to accommodate the benchmark case h0(u) = h (u) ≡ 1, which corresponds
to absence of unobserved heterogeneity, I will assume that the density h in
the log-likelihood function (35) is confined to a space of density functions h
on (0, 1] satisfying the moment conditionsZ 1

0

ln (ln (1/u)) h (u) du =

Z 1

0

ln (ln (1/u)) du, (73)Z 1

0

(ln (ln (1/u)))2 h (u) du =

Z 1

0

(ln (ln (1/u)))2 du. (74)
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It is obvious from the easy equalitiesZ 1

0

(ln (ln (1/u)))p du =

Z ∞

−∞
xp. exp(x) exp (− exp(x)) dx

for p = 1, 2 that the right-hand side integrals in (73) and (74) are finite.
Their values are Z 1

0

ln (ln (1/u)) du = −0.577189511,Z 1

0

(ln (ln (1/u)))2 du = 1.981063818,

which have been computed by Monte Carlo integration.11

Theorem 7. Let h and h0 be confined to density functions satisfying the
moment conditions (73) and (74). Then under Assumptions 1-2 the ICMPH
model is nonparametrically identified.

5.5 Implementation of moment and quantile conditions

The moment conditions (73) and (74) can be implemented by penalizing
the log-likelihood function (35) for deviations from the moment conditions
involved by augmenting the log-likelihood function ln (LN (α, β, h)) with two
penalty terms:

ln (L∗N(α,β, h)) = ln (LN(α, β, h)) (75)

−N
µZ 1

0

ln (ln (1/u)) h (u) du−
Z 1

0

ln (ln (1/u)) du

¶2`
−N

µZ 1

0

(ln (ln (1/u)))2 h (u) du−
Z 1

0

(ln (ln (1/u)))2 du

¶2`
for some integer ` ≥ 1.
Similarly, also the quantile restrictions (62) can be implemented by pe-

nalizing the log-likelihood function:

ln (L∗N(α, β, h)) = ln (LN (α, β, h)) (76)

−N
µZ u1

0

h (v) dv − u1
¶2`
−N

µZ u2

0

h (v) dv − u2
¶2`

11Using one million random drawings from the uniform [0, 1] distribution.
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for some integer ` ≥ 1.
For SNP density functions (18) the moment conditions (73) and (74) read

Ã
1 +

nX
k=1

δ2k

!Z 1

0

(ln (ln (1/u)))p hn (u) du

=

Z 1

0

(ln (ln (1/u)))p du+ 2
nX
k=1

δk

Z 1

0

(ln (ln (1/u)))p ρk(u)du

+
nX
k=1

nX
m=1

δk

µZ 1

0

(ln (ln (1/u)))p ρk(u)ρm(u)du

¶
δm

=

Ã
1 +

nX
k=1

δ2k

!Z 1

0

(ln (ln (1/u)))p du

for p = 1 and p = 2, respectively. Hence, denoting

a0n,p =
µZ 1

0

(ln (ln (1/u)))p ρ1(u)du, · · · ,
Z 1

0

(ln (ln (1/u)))p ρn(u)du

¶
and

Bn,p =

µZ 1

0

(ln (ln (1/u)))p ρi1(u)ρi2(u)du ; i1, i2 = 1, 2, ..., n

¶
−
Z 1

0

(ln (ln (1/u)))p du.In,

the conditions (73) and (74) with h replaced by (18) are equivalent to 2δ0an,1+
δ0Bn,1δ = 0, 2δ0an,2+ δ0Bn,2δ = 0, respectively, where δ = (δ1, ..., δn)

0. There-
fore, if we replace h in (75) by hn(.|δ) , the penalized log-likelihood can be
written as

ln (L∗N(α,β, hn(.|δ))) = ln (LN(α,β, hn(.|δ))) (77)

−N
µ
2δ0an,1 + δ0Bn,1δ

1 + δ0δ

¶2`
−N

µ
2δ0an,2 + δ0Bn,2δ

1 + δ0δ

¶2`
for some integer ` ≥ 1.
Note that for p = 1, 2 the vectors an,p and matrices Bn,p can easily be

computed in advance by Monte Carlo integration.
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If we would assume that for some fixed n, h0(u) = hn(u|δ0), so that
hn(u|δ0) is treated as a parametric specification of the density h0(u), and if
we choose ` ≥ 2, then

lim
N→∞

V ar

µ
1√
N

∂ ln (L∗N(α0, β0, hn(.|δ0)))
∂ (α00, β

0
0, δ

0
0)

¶
= lim

N→∞
V ar

µ
1√
N

∂ ln (LN(α0,β0, hn(.|δ0)))
∂ (α00,β 00, δ00)

¶
and

lim
N→∞

E

µ−1
N

∂2 ln (L∗N(α0, β0, hn(.|δ0)))
∂ (α00, β00, δ00)

0 ∂ (α00, β 00, δ00)

¶
= lim

N→∞
E

µ−1
N

∂2 ln (LN(α0,β0, hn(.|δ0)))
∂ (α00, β

0
0, δ

0
0)
0 ∂ (α00,β

0
0, δ

0
0)

¶
.

Consequently, the penalized ML estimators of α0,β0 and δ0 are then asymp-
totically efficient. Therefore, I advocate to choose ` = 2.
Similarly, if we replace h in (76) by hn(.|δ), the penalized log-likelihood

becomes

ln (L∗N(α, β, hn(.|δ))) = ln (LN (α, β, hn(.|δ)))
−N (Hn(u1|δ)− u1)2` −N (Hn(u2|δ)− u2)2` ,

with Hn(u|δ) defined by (22). For the same reason as before I recommend to
choose ` = 2.

6 Requirements for consistency of SNP max-
imum likelihood estimators

We can write the (penalized) log-likelihood as

ln (L∗N(α,β, h)) =
NX
j=1

Ψ(Yj,α,β, h),

where Yj =
¡
D1,j , ..., DM,j ,X

0
j

¢0
. In the cases (75) and (76),

Ψ(Yj ,α, β, h) =
MX
i=1

Di,j ln (H (µi−1 (α, β 0Xj))−H (µi (α, β 0Xj))) (78)
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+

Ã
1−

MX
i=1

Di,j

!
ln (H (µM (α, β

0Xj)))−Π(h),

where Π(h) represents the two penalty terms.
The maximum likelihood estimators of α0, β0 and h0 are³bα, bβ,bh´ = arg max

α∈A,β∈B,h∈D(0,1)
N−1 ln (L∗N (α, β, h)) , (79)

where

Assumption 3. A and B are given compact parameter spaces for α and β,
respectively, containing the true parameters: α0 ∈ A, β0 ∈ B,

and the space D(0, 1) is a compact metric space of density functions on [0, 1],
containing the true density h0. The space D(0, 1) will be endowed with the
metric

kh1 − h2k1 =
Z 1

0

|h1(u)− h2(u)| du. (80)

Let
Ψ(α, β, h) = E [Ψ(Yj,α,β, h)] . (81)

To prove the consistency of the ML estimators, we need to show first that

p lim
N→∞

Ψ(bα, bβ,bh) = Ψ(α0, β0, h0). (82)

Similar to the standard consistency proof for M estimators it can be shown
that if Ψ is continuous and (α0, β0, h0) is unique then (82) implies that

p limN→∞ bα = α0, p limN→∞ bβ = β0 and p limN→∞
°°°bh− h0°°°

1
= 0.

In general it will be impossible to compute (79) because it requires to
maximize the log-likelihood function over a space of density functions. How-
ever, there exists an increasing sequence DnN (0, 1) of compact subspaces of
D(0, 1) such that the densities in DnN (0, 1) can be parametrized by a finite
(but increasing) number of parameters, namely a space of densities of the
type (18), where n = nN is a subsequence of N , and the δ’s are confined to
a compact subset of RnN . Then³eα, eβ,eh´ = arg max

α∈A,β∈B,h∈DnN (0,1)
N−1 ln (L∗N (α, β, h)) (83)
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is feasible. This is known as sieve estimation. See Chen (2005) for a review
of sieve estimation. Moreover, it follows from Theorem 3 that we can choose
a sequence of densities hN ∈ DnN (0, 1) such that limN→∞ ||hN − h0||1 = 0.

This result can be used to prove that p limN→∞ eα = α0 and p limN→∞ eβ = β0,
and p limN→∞ ||eh− h0||1 = 0.
The crux of the consistency problem is twofold, namely: (1) how to make

the metric space D(0, 1) compact; and (2) how to prove (82). These problems
will be addresses in the next sections.

7 Compactness of the density space
Consider the space of density functions of the type (17), subject to the con-
dition

P∞
k=1 δ

2
k < ∞. This condition can easily be imposed, for example by

restricting the δk’s such that for some constant c > 0,

|δk| ≤ c

1 +
√
k ln(k)

, (84)

because then
P∞

k=1 δ
2
k < c

2 + c2
P∞

k=2 k
−1 (ln(k))−2 < c2 + c2/ ln(2) <∞.

The conditions (84) also play a key-role in proving compactness:

Theorem 8. Let D(0, 1) be the space of densities of the type (17) subject
to the restrictions (84) for some constant c > 0, endowed with the metric
kh1 − h2k1 =

R 1
0
|h1(u) − h2(u)| du. Then D(0, 1) is compact.

Proof : Appendix.
Of course, the result of Theorem 8 is only useful for our purpose if the

constant c in (84) is chosen so large that

Assumption 4. The true density h0 is contained in D(0, 1).

Finally, it follows now straightforwardly from Theorem 3 that the follow-
ing result holds.

Theorem 9. For a subsequence n = nN of N, let Dn(0, 1) be the space of
densities of the type (18) subject to the restrictions (84), with c the same as
for D(0, 1). For each N , DnN (0, 1) is a compact subset of D(0, 1), and
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for each h ∈ D(0, 1) there exists a sequence hN ∈ DnN (0, 1) such that
limN→∞

R 1
0
|h(u) − hN(u)| du = 0.

8 Consistency of M-estimators in the pres-
ence of non-Euclidean parameters

I will now address the problem how to prove (82). To relate (82) to Theorem
10 below, denote Θ = {(α,β, h) : α ∈ A, β ∈ B, h ∈ D(0, 1)} , and define
a metric d(., .) on Θ by combining the metrics on A, B and D(0, 1). For
example, for θ1 = (α1, β1, h1) ∈ Θ, θ2 = (α2,β2, h2) ∈ Θ, let

d (θ1, θ2) = max

∙q
(α1 − α2)

0 (α1 − α2), (85)q
(β1 − β2)

0 (β1 − β2),

Z 1

0

|h1(u)− h2(u)| du
¸
.

Theorem 10. Let Yj , j = 1, ..., N, be a sequence of i.i.d. random vectors
in a Euclidean space, defined on a common probability space {Ω,F , P} , with
support contained in an open set Y . Let Θ be a compact metric space with
metric d (θ1, θ2) . Let g(y, θ) be a continuous real function on Y×Θ such that
for each θ ∈ Θ,

E [|g(Y1, θ)|] <∞, (86)

so that g(θ) = E [g(Y1, θ)] is defined and finite, and let for some constant
K0 > 0,

E

∙
max

µ
sup
θ∈Θ

g(Y1, θ),−K0

¶¸
<∞. (87)

Denote bθ = argmaxθ∈ΘN−1PN
j=1 g(Yj , θ) and θ0 = argmaxθ∈Θ g(θ). Then

p limN→∞
³
1
N

PN
j=1 g(Yj ,

bθ)− g(bθ)´ = 0 and consequently,
p lim
N→∞

g(bθ) = g(θ0). (88)

(a) If θ0 is unique then (88) implies p limN→∞ d(bθ, θ0) = 0.
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(b) Suppose that θ0 is partially unique, in the following sense. Let θ0 =¡
θ00,1, θ

0
0,2

¢0 ∈ Θ1 × Θ2 = Θ, where Θ1 and Θ2 are compact metric spaces
with metrics d1 and d2 respectively. There exists a subset Θ∗2 ⊂ Θ2, possibly

containing more than one point, such that for all θ2 ∈ Θ∗2, g
³¡

θ00,1, θ0,2
¢0´

=

g
³¡

θ00,1, θ
0
2

¢0´
. On the other hand, let for all θ1 ∈ Θ1\ {θ0,1} ,

sup
θ2∈Θ2

g
¡
(θ01, θ

0
2)
0¢
< g

³¡
θ00,1, θ0,2

¢0´
. (89)

Partition bθ accordingly as bθ = ³bθ01,bθ02´0 ∈ Θ1×Θ2.Then p limN→∞ d1
³bθ1, θ0,1´

= 0 and p limN→∞ g
µ³

θ00,1,bθ02´0¶ = g ³¡θ00,1, θ00,2¢0´ .
Proof : Appendix.
In the penalized log-likelihood case, let g(Yj , θ) = Ψ(Yj,α, β, h), where

the latter is defined by (78). Clearly, H (µi(α,β 0x)) is continuous in α ∈ A,
β ∈ B and all x, and H itself is uniformly continuous with respect to the
metric (80), sup0≤u≤1 |H1(u)−H2(u)| ≤ kh1 − h2k1 . Moreover, the penalty
term −Π(h) in (78) is continuous in h. Therefore, Ψ(y,α, β, h) is continuous
on Y ×A×B ×D(0, 1), where Y is the Euclidean space with dimension the
dimension of Yj =

¡
D1,j , ...,DM,j, X

0
j

¢
. Then Ψ(α,β, h) is also continuous on

A×B ×D(0, 1).
It is easy to verify from (78) that Ψ(Yj ,α, β, h) ≤ 0, hence condition (87)

holds, and condition (86) holds if

Assumption 5. For all (α, β, h) ∈ A × B ×D(0, 1), E [ln (L∗N (α, β, h))] >
−∞.

Thus, under Assumptions 1-5, the conditions of part (a) of Theorem 10 hold,
hence (82) is true.
As said before, maximizing a function over a non-Euclidean metric space

Θ is usually not feasible, but it may be feasible to maximize such a function
over a subset ΘN ⊂ Θ such that under some further conditions the resulting
feasible M estimator is consistent:

Theorem 11. Let the conditions of Theorem 10 hold, and let ΘN ⊂ Θ be
such that the computation of eθ = argmaxθ∈ΘN N−1PN

j=1 g(Yj , θ) is feasible.
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If each ΘN contains an element θN such that limN→∞ d (θN , θ0) = 0, then
p limN→∞ g(eθ) = g(θ0). Consequently, the results (a) and (b) in Theorem 10
carry over to eθ.
Proof : Appendix.
We can now formulate the consistency results for the sieve ML estimators

of the parameters of the SNP-ICMPH model:

Theorem 12. Let α0,β0, h0 be the true parameters of the ICMPH model.
Let L∗N(α,β, h) be the penalized likelihood function, and let³eα, eβ,eh´ = arg max

α∈A,β∈B,h∈DnN (0,1)
ln (L∗N(α,β, h))

where DnN (0, 1) is the space of density functions defined in Theorem 9. Then
under Assumptions 1-5, p limN→∞ eα = α0, p limN→∞ eβ = β0 and

p lim
N→∞

Z 1

0

¯̄̄eh(u)− h0(u)¯̄̄ du = 0.
Note that the speed of convergence nN of hN ∈ DnN (0, 1) to h0 ∈ D(0, 1) [see
Theorem 9] does not matter for this result. Therefore, as far as consistency
is concerned the space DnN (0, 1) may be selected adaptively, by using for
example the well-known Hannan-Quinn (1979) or Schwarz (1978) information
criteria.

9 The ICMPH model with finite-valued co-
variates

As said before, Assumption 2 if often not satisfied in practice. In this section
I will therefore consider the more realistic case that the covariates are finite-
valued:

Assumption 1∗: None of the components of the vector Xj ∈ Rk of covari-
ates is a constant. The support S of Xj is finite: S = {x1, x2, ...., xK},
P [Xj ∈ S] = 1.
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9.1 Lack of identification

In this case the ICMPH model is no longer identified. Instead of a single
true parameter vector θ0 =

¡
α00, β

0
0

¢0
there now exists a set Θ0 of ”true”

parameters (henceforth called admissible rather than true), in the sense that
for each

¡
α00, β

0
0

¢0 ∈ Θ0 there exist uncountable many distribution function
H0 on [0, 1] for which the model is correct. I will show this for the ICMPH
model (39) in the form

p0m,` = P [Σmi=1Di,j = 0 | Xj = x`] (90)

= H0

³
exp

³
− exp

³
β
0
0x` + α00ωm

´´´
,

m = 1, ..,M, ` = 1, ..., K,

where ωm is columnm of theM×M upper-triangular matrix Ω = (ωi1,i2) with
typical element ωi1,i2 = I(i1 ≤ i2), and α0 = (α0,1,α0,2, ...,α0,M)

0 satisfying
α0,m > 0 for m = 2, 3, ...,M. As part of the model specification I will choose
closed hypercubes for the parameter spaces of α and β:

A = ×Mi=1 [αi,αi] , αi > 0 for i = 2, ...,M, B = ×ki=1
h
β
i
, βi

i
, (91)

where the intervals involved are wide enough such that A × B contains at
least one admissible parameter vector (α00, β

0
0)
0 . Moreover, note that the log-

likelihood ln (LN (α, β, h)) involved is the same as in (35), except that now
µi (α, β

0Xj) = exp(− exp(β 0Xj + α0ωi)) for i = 1, ...,M.
If K is small relative to the sample size N , then we can treat the proba-

bilities p0m,` as parameters, with corresponding log-likelihood

ln (LN (P )) =
NX
j=1

D1,j

KX
`=1

I (Xj = x`) ln (1− p1,`) (92)

=
NX
j=1

MX
i=2

Di,j

KX
`=1

I (Xj = x`) ln (pi−1,` − pi,`)

+
NX
j=1

Ã
1−

MX
i=1

Di,j

!
KX
`=1

I (Xj = x`) ln (pM,`) .

where P = (pi,` ; i = 1, ...,M, ` = 1, ...., K) is an M ×K parameter matrix.
It is easy to verify that the ML estimator of

P0 =
¡
p0i,` ; i = 1, ...,M, ` = 1, ...., K

¢
(93)
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is an M ×K matrix bP with elements
bpm,` = PN

j=1 (1− Σmi=1Di,j) I (Xj = x`)PN
j=1 I (Xj = x`)

. (94)

Thus, in this case there is no need for a model. However, I will assume that
K is too large for this approach.
The size of the set Θ0 of admissible parameter vectors in A×B is maximal

(in term of Lebesgue measure) if

Assumption 2∗. The probabilities p0m,` = P [Σ
m
i=1Di,j = 0 | Xj = x`], m =

1, ...,M, ` = 1, ..., K, are all different,12

because then this set is the simplex:

Θ0 = ∩p0m2,`2>p0m1,`1
©
θ = (α0,β 0)0 ∈ A×B : (95)

β
0
(x`1 − x`2) + α0 (ωm1 − ωm2) > 0

o
,

where `1, `2 = 1, ..., K and m1,m2 = 1, ...,M. Any point θ = (α0, β0)0 ∈
Θ0 is an admissible parameter vector because there exist uncountable many
continuous distributions function H on [0, 1] that fit through the M × K
points

¡
exp

¡− exp ¡β 0
x` + α0ωm

¢¢
, pm,`

¢
, so that then

p0m,` = P [Σmi=1Di,j = 0 | Xj = x`] (96)

= H
³
exp

³
− exp

³
β
0
x` + α0ωm

´´´
.

as well.
On the other hand, the distribution functions H and H0 can be confined

to SNP distribution functions:

Lemma 3. Given K points (ui, vi) ∈ (0, 1) × (0, 1) satisfying u1 < u2 <
... < uK, v1 < v2 < ... < vK , there exists an SNP distribution function

12Note that this assumption is stronger a condition than Assumption 1(a), as it implies
that the elements of S can be ordered such that β00x1 < β00x2 < .... < β00xK , which may
not be possible if some of the components of β0 are zero. Moreover, Assumption 1(b) is
no longer applicable, because β00x is now a one-to-one mapping on S, which implies that
E[Xj |β00Xj ] = E[Xj |Xj ] = Xj . Therefore, Σ0 in Assumption 1(b) is now a zero matrix!
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Hn(u|δ) =
R u
0
hn(v|δ)dv, with hn defined by (18), such that Hn(ui|δ) = vi for

i = 1, ..., K. However, δ may not be unique, even for the minimal value of n.

Proof : Appendix.
Therefore, the space D(0, 1) of density functions h can be restricted to

D(0, 1) = ∪∞n Dn(0, 1), where Dn(0, 1) is defined in Theorem 9. Thus, for
each (α0, β 0)0 ∈ Θ0 there exists a minimal polynomial order n(α,β) and one
or more densities hn(α,β) ∈ Dn(α,β)(0, 1) with c.d.f. Hn(α,β) such that (96)
holds for H(u) = Hn(α,β)(u).
Neither the quantile conditions (62) nor the moment condition (73) and

(74) are sufficient to solve this identification problem. The only way we can
solve this problem is to design a procedure for selecting a unique point in the
simplex Θ0. I will propose to do that via quasi maximum likelihood (QML).

9.2 Quasi maximum likelihood

The idea is to approximate p0m,` using for h a low-order SNP density hq(u|δ).
Suppose that

Assumption 3∗: The polynomial order q is chosen such that

(αq, βq, hq) = arg max
(α,β,h)∈A×B×Dq(0,1)

E
£
N−1 lnLN(α, β, h)

¤
(97)

is unique.

If in addition,

Assumption 4∗: E [N−1 lnLN(α, β, h)] > −∞ for all (α, β, h) ∈ A × B ×
∪∞n Dn(0, 1),

then it follows similar to Theorem 11 that the QML estimators³eαq, eβq,ehq´ = arg max
(α,β,h)∈A×B×Dq(0,1)

lnLN(α, β, h) (98)

converges in probability to (αq, βq, hq) .
Note that the QML estimation problem (98) is fully parametric. Denoting

∆q =
©
δ = (δ1, ..., δq)

0 s.t. (84)
ª
,
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(98) is equivalent to³eαq, eβq,eδq´ = arg max
(α,β,δ)∈A×B×∆q

ln (LN (α, β, hq(.|δ)))

and (97) is equivalent to

(αq, βq, δq) = arg max
(α,β,δ)∈A×B×∆q

E
£
N−1 ln (LN (α,β, hq(.|δ)))

¤
.

Therefore, the standard QML asymptotics applies [c.f. White (1982)]. In
particular, if

Assumption 5∗.
¡
α
0
q,β

0
q, δ

0
q

¢0
is an interior point of Θ0 ×∆q,

then
√
N

⎛⎝ eαq − αqeβq − βqeδq − δq

⎞⎠→ NM+k+q
£
0,Ω−12 Ω1Ω

−1
2

¤
in distribution, where

Ω1 = Var

Ã
∂ lnLN (αq,βq, hq(.|δq)) /

√
N

∂(α0q, β 0q, δ0q)

!
,

Ω2 = −E
∙
∂2 lnLN (αq,βq, hq(.|δq)) /N
∂(α0q, β 0q, δ0q)0∂(α0q, β 0q, δ0q)

¸
.

Next, suppose that:

Assumption 6∗. The ranking of pm,`(q) = Hq
¡
exp

¡− exp ¡β0
qx` + α0qωm

¢¢¢
is the same as the ranking of p0m,` = P [Σ

m
i=1Di,j = 0 | Xj = x`] ,

where Hq is the c.d.f. of hq. If so, then the ranking of the QML estimates

epm,`(q) = eHq ³exp³− exp³eβ 0

qx` + eα0qωm´´´ (99)

of the pm,`(q)’s will be equal to the ranking of the p0m,`’s with probability
converging to one.
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Note that a sufficient condition for Assumption 6∗ to hold is that it is
possible to choose q such that

max
m,`

¯̄
p0m,` − pm,`(q)

¯̄
<
1

2
min

(m1,`1) 6=(m2,`2)

¯̄
p0m1,`1

− p0m2,`2

¯̄
. (100)

Then it follows from (95) that
¡
α0q,β

0
q

¢0 ∈ Θ0, hence we may interpret αq and
βq as the ”true” parameters,

α0 = αq, β0 = βq, (α
0
0, β

0
0)
0 ∈ Θ0, (101)

with corresponding QML estimators bα = eαq, bβ = eβq, satisfying
lim
N→∞

P

∙³bα0, bβ 0´0 ∈ Θ0

¸
= 1

(due to Assumption 5∗), and

√
N

µ bα− α0bβ − β0

¶
→ NM+k [0,Σ] (102)

in distribution, where Σ = (IM+k, O)Ω−12 Ω1Ω
−1
2 (IM+k, O)

0.

9.3 Consistent estimation of the minimal polynomial
order

Given the reparametrization (101) it follows now from Lemma 3 that there
exists a smallest polynomial order n0 and a hn0 ∈ Dn0(0, 1) with c.d.f. Hn0
such that

P [Σmi=1Di,j = 0 | Xj = x`] = Hn0

³
exp

³
− exp

³
β
0
0x` + α00ωm

´´´
,

m = 1, ...,M, ` = 1, ..., K. (103)

I will show that n0 can be estimated consistently via a new information
criterion:

CN (n) =
−1
N

sup
h∈Dn(0,1)

ln
³
LN
³bα, bβ, h´´+ (M + k + n) .

ϕ(N)

N
,(104)

where lim
N→∞

ϕ(N)/N = 0 and lim
N→∞

ϕ(N)/
√
N =∞.
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Recall that the Hannan-Quinn (1979) criterion corresponds to the case ϕ(N)
= ln (ln (N)) and the Schwarz (1978) criterion to the case ϕ(N) = ln (N) /2,
so that these criteria are not suitable for our purpose.

Theorem 13. Given the Assumptions 1 ∗-6 ∗ and the reparametrization
(101), let n0 be the smallest polynomial order for which there exists an SNP
distribution function Hn0 such that (103) is true. Let CN(n) be defined by
(104). Then

p limN→∞CN(n+ 1) < p limN→∞CN(n) if n < n0, (105)

p limN→∞ N
ϕ(N)

(CN (n)− CN (n− 1)) = 1 if n > n0. (106)

Proof : Appendix.
Consequently, under the conditions of Theorem 13,

bn = max
s.t . CN (n)<CN (n−1), n≥2

n,

is a consistent estimator of n0:

lim
N→∞

P [bn = n0] = 1. (107)

9.4 Consistency of the SNP probability estimators

The partial optimization problem suph∈Dbn(0,1) ln
³
LN
³bα, bβ, h´´ yields SNP

estimates bp∗m,` = bH ³exp³− exp³bβ 0
x` + bα0ωm´´´ (108)

of the probabilities p0m,` in (90). Although bH (u) may not be unique on [0, 1],
we nevertheless have that

Theorem 14. Under the conditions of Theorem 13 the SNP probability es-
timators (108) are consistent: p limN→∞ bp∗m,` = P [Σmi=1Di,j = 0 | Xj = x`] .
Proof : Appendix.
It is clear that Assumption 6∗ is the crux of the results in this section.

Although designing a test for the validity of Assumption 6∗ is beyond the
scope of this paper, in the absence of such a test one should at least check
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whether the ranking of the bp∗m,`’s matches the ranking of the estimates epm,`(q)
in (99) based on the QML results. If not, increase q and redo the estimation
until the rankings match.

10 Concluding remarks
Because the ICMPH model under review is equivalent to an ordered proba-
bility model of the form (39), the results in this paper are straightforwardly
applicable to more general ordered probability models as well, simply by
replacing (40) with F0 (x) = 1 −H0 (1−G(x)) , where G(x) is a given dis-
tribution function. For example, let G(x) = 1/ (1 + exp(−x)). Then (39)
becomes a semi-nonparametric ordered logit model. The only difference
with the ICMPH model is that moment conditions (73) and (74) need to
be adjusted, because these moment conditions correspond to the special case
G(x) = 1− exp (− exp(x)) .
The idea to model densities semi-nonparametrically via semi-nonparame-

tric densities on the unit interval is the most straightforward part of this
paper. The main contributions in this paper are (1) the application of this
idea to interval-censored mixed proportional hazard models; (2) the deriva-
tion of the conditions under which these models are nonparametrically iden-
tified; (3) the construction of the compact metric space of densities on the
unit interval; (4) the weak consistency results for sieve M-estimators under
weak and verifiable conditions, even under partial identification, and (5) the
two-step approach to get around the lack of identification problem in the
case where the support of the covariates is finite.
Although there is a fair amount of literature on asymptotic normality

of semi-nonparametric parameter estimators [see for example Chen (2005)
and the references therein], this literature is not directly applicable to the
cases considered in this paper. The reason is that the semi-nonparametric
argument in the log-likelihood of the models considered in this paper involve
distribution functions H(u) on the unit interval only, and that the L1 metric
kh1 − h2k1 =

R 1
0
|h1(u)− h2(u)| du on the space D(0, 1) of density functions

h(u) on [0, 1] implies the sup metric on the corresponding space of distribution
function H(u) on [0, 1]. The latter metric plays a crucial role in proving
consistency in the case of continuously distributed covariates. For deriving
asymptotic normality, however, we need to work with the scores of the log-
likelihood, which involved ratios of densities and distribution functions on
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the unit interval and their derivatives. In view of the asymptotic normality
conditions in Chen (2005, Section 4.2.1) the L1 metric on D(0, 1) will not be
sufficient to derive asymptotic normality results for the models under review.
The asymptotic normality problem will be left for future research.
The current topology of the space D(0, 1) is also not sufficient for consis-

tent sieve estimation of mixed proportional hazard models with right censor-
ing only, because then the log-likelihood function involves the log of a density
h(u) on [0, 1], for which the L1 metric is too weak to prove consistency along
the lines in this paper. Also this problem will be left for future research.
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12 Appendix

12.1 Proof of Theorem 8

The theorem involved follows from the following lemmas:

Lemma A.1. Let ξ = {ξk}∞k=0 be a given sequence of positive numbers
satisfying

ξ0 > 1,
∞X
k=1

ξ2k <∞, (109)

and let Fξ be the set of functions f(u) =
P∞

k=0 γkρk(u) in L
2
B(0, 1) for which

γk ∈ [−ξk, ξk] , k = 0, 1, 2, ...., endowed with the metric (9). Then Fξ is
compact.
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Proof : It suffices to prove that Fξ is complete and totally bounded. See
Royden (1968, Proposition 15, p.164).
To prove completeness, let fn(u) =

P∞
k=0 γn,kρk(u) be an arbitrary Cauchy

sequence in F
ξ
. Since fn(u) is a Cauchy sequence in the Hilbert space L2B(0, 1)

it converges to a function f(u) =
P∞

k=0 γkρk(u) in L
2
B(0, 1). Now Fξ is com-

plete if f ∈ Fξ. Thus, we need to show that γk ∈ [−ξk, ξk] for all k andP∞
k=0 γ

2
k = 1.

To prove γk ∈ [−ξk, ξk] , note that kfn − fk2 =
qP∞

k=0 (γn,k − γk)
2 → 0

implies that for each k, γn,k → γk. Since γn,k ∈ [−ξk, ξk] it follows that
γk ∈ [−ξk, ξk] .
To prove

P∞
k=0 γ

2
k = 1, let ε ∈ (0, 1) be arbitrary. Since Pm

k=0 γ
2
n,k =

1−P∞
k=m+1 γ

2
n,k ≥ 1−

P∞
k=m+1 ξ

2
k we can choose m so large that uniformly

in n, 0 ≤ 1 −Pm
k=0 γ

2
n,k < ε. Since for k = 0, 1, ...,m, γn,k → γk, it follows

that 0 ≤ 1−Pm
k=0 γ

2
k < ε. Thus limm→∞

Pm
k=0 γ

2
k = 1. Hence Fξ is complete.

To prove total boundedness, let ε > 0 be arbitrary and let Fξ,n be the
space of functions fn(u) =

Pn
k=0 γkρk(u) such that

Pn
k=0 γ

2
k ≤ 1 and γk ∈

[−ξk, ξk] , k = 0, 1, 2, ...., n. Choose n so large that
P∞

k=n+1 ξ
2
k < ε. Then for

each f ∈ Fξ there exists an fn ∈ Fξ,n such that kf − fnk2 < ε. The set of
vectors γ = (γ0, γ1, ..., γn)0 satisfying γ ∈ ×nk=0 [−ξk, ξk] , γ0γ ≤ 1 is a closed an
bounded subset of Rn+1 and is therefore compact, and consequently, Fξ,n is
compact. Therefore, there exists a finite number of functions f1, ..., fM ∈ Fξ,n

such that
Fξ,n ⊂ ∪Mj=1

©
f ∈ Fξ(0, 1) : kf − fjk2 < ε

ª
This implies that

F
ξ
⊂ ∪Mj=1

©
f ∈ Fξ(0, 1) : kf − fjk2 < 2ε

ª
⊂ ∪Mj=1

©
f ∈ L2B(0, 1) : kf − fjk2 < 2ε

ª
,

hence F
ξ
is totally bounded. Q.E.D.

Lemma A.2. Under condition (109) the space

F∗
ξ
=

(
f : f(u) =

1 +
P∞

k=1 δkρk(u)p
1 +

P∞
k=1 δ

2
k

, δ2k ≤ ξ2k

)

endowed with the metric (9) is compact.
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Proof : It follows from (16) and (109) that

γ2k =
δ2k

1 +
P∞

k=1 δ
2
k

≤ ξ2k, k ≥ 1,

γ20 =
1

1 +
P∞

k=1 δ
2
k

≤ 1 < ξ20

γ20 ≥
1

1 +
P∞

k=1 ξ
2
k

> 0, (110)

hence F∗
ξ
⊂ Fξ.

For a metric space the notions of compactness and sequential compact-
ness are equivalent. See Royden (1968, Corollary 14, p. 163). Sequential
compactness means that any infinite sequence in the metric space has a con-
vergent subsequence which converges to an element in this space. Therefore,
any infinite sequence fn ∈ F∗ξ ⊂ Fξ has a convergent subsequence

fmn(u) =
1 +

P∞
k=1 δk,mnρk(u)q

1 +
P∞

k=1 δ
2
k,mn

with limit

f(u) =
∞X
k=0

γkρk(u) ∈ Fξ(0, 1).

It is easy to verify that

γ0 = lim
n→∞

1q
1 +

P∞
k=1 δ

2
k,mn

≥ 1p
1 +

P∞
k=1 ξ

2
k

> 0,

γk = lim
n→∞

δk,mnq
1 +

P∞
k=1 δ

2
k,mn

= γ0 lim
n→∞

δk,mn, k ≥ 1.

Denoting δk = γk/γ0 we can write f(u) as

f(u) =
1 +

P∞
k=1 δkρk(u)p

1 +
P∞

k=1 δ
2
k

where δ2k = limn→∞ δ2k,mn
≤ ξ2k, so that f ∈ F∗ξ . Thus F∗ξ is sequentially

compact and hence compact. Q.E.D.
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Lemma A.3. The space Dξ(0, 1) =
©
h : h = f 2, f ∈ F∗ξ

ª
of density func-

tions on [0, 1] endowed with the metric (80) is compact.

Proof : It follows from Schwarz inequality that for each pair of functions
f, g ∈ F∗ξ ,Z 1

0

¯̄
f(u)2 − g(u)2¯̄ du (111)

≤
Z 1

0

|f(u)− g(u)| |f(u)| du+
Z 1

0

|f(u)− g(u)| |g(u)| du

≤
sZ 1

0

(f(u)− g(u))2 du
⎛⎝sZ 1

0

f(u)2du+

sZ 1

0

g(u)2du

⎞⎠
= 2

sZ 1

0

(f(u)− g(u))2 du.

Let hn = f2n be an infinite sequence in Dξ(0, 1). Because F∗ξ is compact, there
exists a subsequence fmn which converges to a limit f in F∗ξ , hence it follows
from (111) that hmn = f

2
mn
converges to h = f 2. Thus Dξ(0, 1) is sequentially

compact and therefore compact. Q.E.D.
We can choose ξk such that D(0, 1) ⊂ Dξ

(0, 1). It is now easy to verify
that D(0, 1) is sequentially compact and therefore compact.

12.2 Proof of Theorem 10

It follows now from Jennrich’s (1969) uniform strong law of large numbers,
in the version in Bierens (1994, Section 2.7) or Bierens (2004, Appendix to
Chapter 6) that under the conditions of Theorem 10, with the conditions
(86) and (87) replaced by

E

∙
sup
θ∈Θ

|g(Y1, θ)|
¸
<∞ (112)

we have

lim
N→∞

sup
θ∈Θ

¯̄̄̄
¯ 1N

NX
j=1

g(Yj, θ)− g(θ)
¯̄̄̄
¯ = 0 a.s. (113)
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However, the condition (112) is too difficult to verify in the log-likelihood
case. Therefore I will use the weaker conditions (86) and (87).
Originally the uniform strong law (113) was derived by Jennrich (1969)

for the case that Θ is a compact subset of a Euclidean space, but it is easy to
verify from the more detailed proofs in Bierens (1994, Section 2.7) or Bierens
(2004, Appendix to Chapter 6) that this law carries over to random functions
on compact metric spaces.
Let K > K0 and note that

E

∙
max

µ
sup
θ∈Θ

g(Y1, θ),−K
¶¸
≤ E

∙
max

µ
sup
θ∈Θ

g(Y1, θ),−K0

¶¸
<∞,

hence E [supθ∈Θ |max (g(Y1, θ),−K)|] < ∞. Then it follows from (113) with
g(Yj, θ) replaced by max (g(Yj , θ),−K) that

lim
N→∞

sup
θ∈Θ

¯̄̄̄
¯ 1N

NX
j=1

max (g(Yj, θ),−K)− gK(θ)
¯̄̄̄
¯ = 0 a.s., (114)

where gK(θ) = E [max (g(Yj , θ),−K)] .
As is well-known, (114) is equivalent to the statement that for all ε > 0,

lim
N→∞

P

"
sup
n≥N

sup
θ∈Θ

¯̄̄̄
¯ 1n

nX
j=1

max (g(Yj, θ),−K)− gK(θ)
¯̄̄̄
¯ < ε

#
= 1

In its turn this is equivalent to the statement that for arbitrary natural
numbers k and m there exists a natural number N(K,k,m) such that for all
N ≥ N(K, k,m),

P

"
sup
n≥N

sup
θ∈Θ

¯̄̄̄
¯ 1n

nX
j=1

max (g(Yj , θ),−K)− gK(θ)
¯̄̄̄
¯ < 1

k

#
> 1− 1

m
.

Let k ≤ K ≤ m. Then there exists a natural number N(K) such that for all
N ≥ N(K),

P

"
sup
n≥N

sup
θ∈Θ

¯̄̄̄
¯ 1n

nX
j=1

max (g(Yj , θ),−K)− gK(θ)
¯̄̄̄
¯ < 1

K

#
> 1− 1

K

For given N , let KN be the maximum K for which N ≥ N(K). Then
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P

"
sup

n≥N(KN )
sup
θ∈Θ

¯̄̄̄
¯ 1n

nX
j=1

max (g(Yj , θ),−KN)− gKN (θ)
¯̄̄̄
¯ < 1

KN

#
> 1− 1

KN

,

hence, for arbitrary ε > 0,

lim
N→∞

P

"
sup

n≥N(KN )
sup
θ∈Θ

¯̄̄̄
¯ 1n

nX
j=1

max (g(Yj, θ),−KN)− gKN
(θ)

¯̄̄̄
¯ < ε

#
= 1,

This result implies that along the subsequence nN = N(KN ),

sup
θ∈Θ

¯̄̄̄
¯ 1nN

nNX
j=1

max (g(Yj , θ),−KN)− gKN (θ)
¯̄̄̄
¯→ 0 a.s., (115)

and the same applies if we had replaced N first by an arbitrary subsequence.
Thus, every subsequence of N contains a further subsequence nN such that
(115) holds. As is well-known, a sequence of random variables converges in
probability if and only if every subsequence contains a further subsequence
along which the sequence involved converges a.s. Thus, (115) implies that
there exists a sequence KN converging to infinity with N such that

p lim
N→∞

sup
θ∈Θ

¯̄̄̄
¯ 1N

NX
j=1

max (g(Yj, θ),−KN )− gKN
(θ)

¯̄̄̄
¯ = 0. (116)

Since the functionmax(x,−K) is convex, it follows from Jensen’s inequal-
ity that

gK(θ) = E [max (g(Yj , θ),−K)] ≥ max (E [g(Yj , θ)] ,−K) (117)

= max (g(θ),−K) ≥ g(θ)

and similarly

1

N

NX
j=1

max (g(Yj , θ),−K) ≥ max
Ã
1

N

NX
j=1

g(Yj , θ),−K
!
≥ 1

N

NX
j=1

g(Yj , θ).

(118)
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It follows from (87), (117) and the dominated convergence theorem that
limK→∞ supθ∈Θ |gK(θ)− g(θ)| = 0, hence (116) now becomes

p lim
N→∞

sup
θ∈Θ

¯̄̄̄
¯ 1N

NX
j=1

max (g(Yj , θ),−KN)− g(θ)
¯̄̄̄
¯ = 0. (119)

Finally, observe from (118) that

1

N

NX
j=1

max
³
g(Yj ,bθ),−KN

´
− g(bθ) ≥ 1

N

NX
j=1

g(Yj,bθ)− g(bθ) (120)

≥ 1

N

NX
j=1

g(Yj, θ0)− g(θ0) + g(θ0)− g(bθ) ≥ 1

N

NX
j=1

g(Yj , θ0)− g(θ0).

By Kolmogorov’s strong law of large numbers, the lower bound in (120)
converges a.s. to zero, and by (119) the upper bound in (120) converges

in probability to zero, hence p limN→∞
³
1
N

PN
j=1 g(Yj ,

bθ)− g(bθ)´ = 0, which
implies (88).
(a) If θ0 is unique then by the continuity of g(θ) and the compactness of

Θ there exists a ε > 0 such that for all ε ∈ (0, ε], supθ∈Θ,d(θ,θ0)≥ε g(θ) < g(θ0).
See, for example, Bierens (2004, Appendix II, Theorem II.6). It follows
therefore from (88) that

P
h
d(bθ, θ0) ≥ ε

i
≤ P

"
g(bθ) ≤ sup

θ∈Θ,d(θ,θ0)≥ε
g(θ)

#
→ 0.

(b) It follows from (88) that p limN→∞ g
µ³bθ01,bθ02´0¶ = g

³¡
θ00,1, θ

0
0,2

¢0´
.

Recall that convergence in probability is equivalent to a.s. convergence
along a further subsequence of an arbitrary subsequence. Thus, every subse-
quence of N contains a further subsequence Nm with corresponding estima-

tors
³bθ01,Nm ,bθ02,Nm´0 such that, for m→∞,

g

µ³bθ01,Nm ,bθ02,Nm´0¶→ g
³¡

θ00,1, θ
0
0,2

¢0´
a.s.

In other words, for all ω in a set with probability 1,

lim
m→∞

g

µ³bθ1,Nm (ω)0 ,bθ2,Nm (ω)0´0¶ = g ³¡θ00,1, θ00,2¢0´ (121)
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Since Θ1 and Θ2 are compact, the sequences bθ1,Nm (ω) and bθ2,Nm (ω) have
limit points θ1 (ω) and θ2 (ω) in Θ1 and Θ2, respectively, hence

g
³¡

θ1 (ω)
0 , θ2 (ω)

0¢0´ = g ³¡θ00,1, θ00,2¢0´
and thus supθ2∈Θ2 g

³¡
θ1 (ω)

0 , θ02
¢0´ ≥ g ¡θ00,1, θ00,2¢ . It follows now from (89)

that θ1 (ω) ≡ θ0,1, hence d1
³bθ1,Nm , θ0,1´→∞ a.s., and consequently,

p lim
N→∞

d1

³eθ1,N , θ0,1´ .
Finally, recall that a continuous function on a compact set is uniformly

continuous on that set. It follows now from (121) and the uniform continuity

of g that limm→∞ g
µ³

θ00,1,bθ2,Nm (ω)0´0¶ = g ³¡θ00,1, θ00,2¢0´ , hence
p lim
N→∞

g

µ³
θ00,1,bθ02´0¶ = g ³¡θ00,1, θ00,2¢0´ .

12.3 Proof of Theorem 11

Similar to (120) we have,

1

N

NX
j=1

max
³
g(Yj,eθ),−KN

´
− g(eθ) ≥ 1

N

NX
j=1

g(Yj , θN)− g(eθ)
≥ 1

N

NX
j=1

g(Yj , θN)− g(θ0) + g(θ0)− g(eθ)
≥ 1

N

NX
j=1

(g(Yj , θN)− g(Yj, θ0)) + 1

N

NX
j=1

g(Yj , θ0)− g(θ0)

It follows from (119) that

p lim
N→∞

Ã
1

N

NX
j=1

max
³
g(Yj,eθ),−KN

´
− g(eθ)! = 0,
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and it follows from Kolmogorov’s strong law of large numbers that

1

N

NX
j=1

g(Yj , θ0)→ g(θ0) a.s. (122)

Moreover, it follows from the continuity of E [|g(Y1, θ)− g(Y1, θ0)|] in θ and
limN→∞ d (θN , θ0) = 0 that

E

¯̄̄̄
¯ 1N

NX
j=1

(g(Yj, θN)− g(Yj , θ0))
¯̄̄̄
¯ ≤ E |g(Y1, θN)− g(Y1, θ0)|→ 0.

Hence by Chebishev’s inequality,

p lim
N→∞

1

N

NX
j=1

(g(Yj , θN)− g(Yj, θ0)) = 0. (123)

Thus, p limN→∞
³
1
N

PN
j=1 g(Yj, θN)− g(eθ)´ = 0, which by (122) and (123)

implies that p limN→∞ g(eθ) = g(θ0).
12.4 Proof of Lemma 3

12.4.1 The case K = 1

Let H(u) be a distribution function on [0, 1] such that H(u1) > v1, and let
H(u) be a distribution function on [0, 1] such thatH(u1) < v1. Then it follows
trivially from Theorem 3 that there exists an n and a pair δ, δ ∈ Rn such
that Hn(u1|δ) > v1 and Hn(u1|δ) < v1. Since ϕn(λ) = Hn(u1|(1 − λ)δ + λδ)
− v1 is a continuous function of λ ∈ [0, 1], with ϕ(0) < 0, ϕ(1) > 0, there
exists a λ ∈ (0, 1) such that ϕn(λ) = 0. For this λ, let δ = (1−λ)δ+λδ. Then
Hn(u1|δ) = v1.
This argument shows that n can be chosen so large that the sets ∆i,n

= {δ ∈ Rn : Hn(ui|δ) = vi} , i = 1, ..., K, are non-empty. It remains to show
that there exists an n such that ∩Ki=1∆i,n 6= ∅.

12.4.2 The case K = 2

Again, it follows straightforwardly from Theorem 3 that there exists an n
and a pair δ, δ ∈ Rn such that

Hn(u1|δ) < v1, Hn(u1|δ) > v1,
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Hn(u2|δ) < v2, Hn(u2|δ) > v2.
For such a pair δ, δ, consider the function

ψn (λ|M) = Hn(u2|(1− λ)δ + λδ)− v2

+

µ
Hn(u1|(1− λ)δ + λδ)

v1

¶M
−
µ

v1

Hn(u1|(1− λ)δ + λδ)

¶M
,

whereM > 0 is a natural number and λ ∈ [0, 1]. For eachM > 0, ψn (λ|M) is
continuous in λ ∈ [0, 1], and for sufficient largeM , ψn (0|M) < 0, ψn (1|M) >
0. Consequently, for such an M > 0 there exists a λM ∈ (0, 1) for which
ψn (λM |M) = 0, so that

Hn(u2|(1− λM)δ + λMδ) = v2

+

µ
v1

Hn(u1|(1− λM)δ + λδM)

¶M
−
µ
Hn(u1|(1− λM)δ + λMδ)

v1

¶M
Now λM is a sequence in the compact interval [0, 1], hence all the limit

points of λM are contained in [0, 1], and for each limit point λ∗ there exists
a subsequence Mj such that limj→∞ λMj

= λ∗. Thus

Hn(u1|(1− λ∗)δ + λ∗δ) = lim
j→∞

Hn(u1|(1− λMj
)δ + λMj

δ) = η,

for instance. If η > v1 then

lim
j→∞

Ã
Hn(u1|(1− λMj

)δ + λMj
δ)

v1

!Mj

= ∞

lim
j→∞

Ã
v1

Hn(u1|(1− λMj
)δ + λMj

δ

!Mj

= 0

hence Hn(u2|(1− λ∗)δ + λ∗δ) =∞, which is impossible. Similarly, if η < v1
then Hn(u2|(1−λ∗)δ+λ∗δ) = −∞, which is again impossible. Consequently,
η = v1, so that

Hn(u1|(1− λ∗)δ + λ∗δ) = v1, Hn(u2|(1− λ∗)δ + λ∗δ) = v2.

This argument shows that for large enough n, ∆1,n ∩∆2,n 6= ∅. Also, this
result implies that we can choose an n and a pair δ, δ ∈ ∆1,n such that

Hn(u2|δ) < v2, Hn(u2|δ) > v2.
The latter will be the basis for the proof of the general case.
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12.4.3 The case K > 2

Let m ≥ 2. Suppose that for large enough n there exists a pair δ, δ ∈
∩m−1i=1 ∆i,n 6= ∅ such that Hn(um|δ) > vm, Hn(um|δ) < vm. This assumption
has been proved for m = 2. Next, consider the function

Φ(m)n (λ|M) = Hn(um|(1− λ)δ + λδ)− vm

+
m−1X
i=1

Ãµ
Hn(ui|(1− λ)δ + λδ)

vi

¶M
+

µ
vi

Hn(ui|(1− λ)δ + λδ)

¶M!
× ¡Hn(ui|(1− λ)δ + λδ)− vi

¢2
,

where again M > 0 is a natural number and λ ∈ [0, 1]. Note that
Φ(m)n (0|M) = Hn(um|δ)− vm < 0,
Φ(m)n (1|M) = Hn(um|δ)− vm > 0,

so that by the continuity of Φ(m)n (λ|M) in λ there exists a λM ∈ (0, 1) such
that Φ(m)n (λM |M) = 0. Similar to the case K = 2 it follows that for all limit
points λ∗ of λM , Hn(ui|(1−λ∗)δ+λ∗δ) = vi, i = 1, ..,m, hence ∩mi=1∆i,n 6= ∅.
The general result follows now by induction.
Finally, to show that δ may not be unique, consider the case K = 1, with

u1 = 1/2 and v1 < 1/2. It is easy to verify that

v1 = H1(1/2|δ) =
R 1/2
0

¡
1 + δ

√
3 (2u− 1)¢2 du

1 + δ2
=
1

2

µ
1− 2δ2
1 + δ2

¶
,

hence δ = ±√1− 2v1/
p
2 (1 + v1).

12.5 Proof of Theorem 13

Part (105) of Theorem 13 follows from the inequality

p lim
N→∞

1

N
sup

h∈Dn(0,1)
ln
³
LN
³bα, bβ, h´´ < p lim

N→∞
1

N
sup

h∈Dn+1(0,1)
ln
³
LN
³bα, bβ, h´´

for n < n0, which in its turn follows trivially from Theorem 10. Part (106)
is true if for n > n0,

sup
h∈Dn(0,1)

ln
³
LN

³bα, bβ, h´´− sup
h∈Dn0 (0,1)

ln
³
LN

³bα, bβ, h´´ = Op(√N). (124)
51



To show that (124) holds, observe first that for all n,

sup
h∈Dn(0,1)

ln
³
LN

³bα, bβ, h´´ ≤ ln³LN ³ bP´´ ,
where bP is the M × K matrix with elements bpm,` defined by (94), and
ln (LN (P )) is defined by (92). Moreover, it follows from standard maximum
likelihood (ratio test) theory that

2
³
ln
³
LN

³ bP´´− ln (LN (P0))´→ χ2M.K

in distribution, where P0 is matrix (93), so that for all n,

sup
h∈Dn(0,1)

ln
³
LN

³bα, bβ, h´´ ≤ ln (LN (P0)) +Op(1). (125)

Furthermore, it is trivial that.

sup
h∈Dn0 (0,1)

ln
³
LN

³bα, bβ, h´´ ≥ ln³LN ³bα, bβ, hn0´´ . (126)

Finally, it follows straightforwardly from (102), the mean value theorem, and
the easy equality

ln (LN (α0, β0, hn0)) = ln (LN (P0)) (127)

that
ln
³
LN

³bα, bβ, hn0´´ = ln (LN (P0)) +Op ³√N´ . (128)

Combining (125), (126) and (126) for n > n0, (124) follows.

12.6 Proof of Theorem 14

Let Ψ(α,β, h) = E [N−1 ln (LN (α,β, h))] and let bh be the density of bH. It
follows from Theorem 10 and (107) that

p lim
N→∞

Ψ(bα, bβ,bh) = sup
h∈Dn0 (0,1)

Ψ(α0, β0, h) (129)
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Next, denote bP∗ = ¡bp∗m,` ; m = 1, ...,M, ` = 1, ..., K
¢
and let

g(P ) = E
£
N−1 ln (LN (P ))

¤
=

KX
`=1

¡
1− p01,`

¢
ln (1− p1,`)

=
MX
i=2

KX
`=1

¡
p0i−1,` − p0i,`

¢
ln (pi−1,` − pi,`) +

KX
`=1

p0M,` ln (pM,`) .

C.f. (92). Then Ψ(bα, bβ,bh) = g( bP∗) and suph∈Dn0(0,1)Ψ(α0,β0, h) = g (P0) .

See (127) for the latter. Hence, it follows from (129) that p limN→∞ g( bP∗) =
g(P0), which by the continuity of g(P ) in the elements of P implies that
p limN→∞ bP∗ = P0.
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